Lecture 12 Covariant Formulation of CED.

- · Recap (Lorent & transformations, 4-vectors)

 (Add Poincaré group)
- · Alds How of velocities, interval
- · Transformation of P and A, A

 Lorentz inv. and Maxwell equations
- · Field strength tensor FyD, gauge inv.
- · Covariant John of Maxwell equations

Recap:
$$\eta_{\mu} \partial = \eta^{\mu} \partial = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$x_{1} = \int \mu dx = (-x^{2}, x^{4}, x^{3})$$

$$x^{2} = c + \int cosh \chi + \frac{x_{1}}{c} sinh \chi$$

$$x_{1} = x_{1} cosh \chi + c + sinh \chi$$

$$x_{2} = x_{3} cosh \chi + c + sinh \chi$$

$$x_{3} = x_{4} cosh \chi + c + sinh \chi$$

$$x_{4} = x_{5} cosh \chi + c + sinh \chi$$

$$\chi^{h'} = \Lambda^h_0 \chi^0$$
, $\chi_{h'} = \Lambda_{\mu} \chi_0$

- Invariant

Poincaré: translations + Lorentz

$$\Lambda = \lambda_{01} \lambda_{02} \lambda_{03} \lambda_{12} \lambda_{13} \lambda_{23}$$

(order matters)

Objects with contracted indices in vantount

we treat $\frac{\partial}{\partial x^n}$ as an object with lower index: ∂_n . $D = -\frac{\partial}{\partial x^A} \frac{\partial}{\partial x^D} \int_{-\infty}^{AD} Lorentz inv.$ Lorentz transform: XM = MM DXP

Addition of velocities

ct = ct cosh x + x sinh x X1 = X1 coshx + c+ sinhx $2 \times 2 = \times 2$ (x3 = x3 x1=0=> c+=-x sinhx

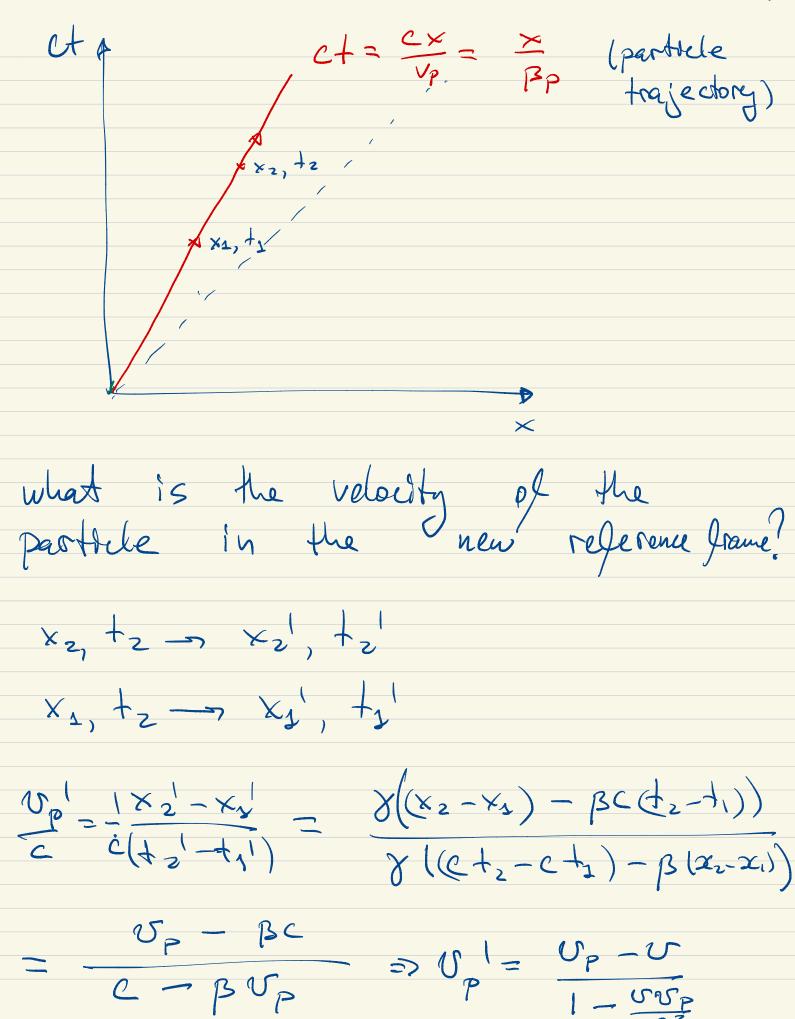
sinhx coshx +1=0 => C+= -x

$$\frac{1}{2} \left(\frac{1}{2} \right) = 0$$

$$\chi = 0 = 7 \quad \chi = -c + \frac{\sinh \chi}{\cosh \chi} = 0.5 +$$

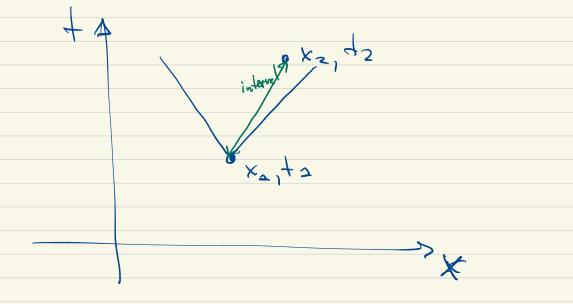
$$ct' = \gamma (ct - \beta x)$$

$$x' = \gamma(x - \beta c +)$$



1 - UVP

Interval

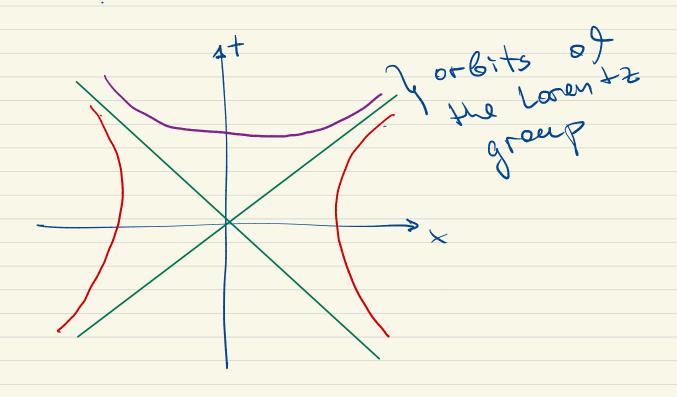


- o interval corresponds to the "internal"
- o Time inside the objects moving with some speed seems to be stoned down when observed from the outside

s²<0 => time-like interval (signal can reach)

s²20 => space-like interval (signal cannot reach)

S=0 => null interval ~ lighteone



Transformation of P and A, Lorentz inv. and Maxwell equations First, let us study Galilean transformations of the charge density and current dansity: +(+,x'), =(+,x') $p(t,\vec{x}) \rightarrow p(t,\vec{x}) = p(t,\vec{x})$ $\frac{2}{2}(+'x) \rightarrow \frac{2}{2}(+'x) + \frac{1}{2}b(+'x)$ this looks like a 4- vector +->+=+ ズラダニマナで、十

(CP , 3) = 59 -> 4-vector-valued Junction: 5th (xth)

It is notwood to expect that
it transforms as a law-vector
under Juli relativistic transformations.

$$5^{4}(x) \rightarrow \Lambda^{4} 25^{9}(x)$$

Charge conservation is Lorent & inv:

$$\partial_{\mu} 5^{\mu} = \xi \partial_{+} \rho + \vec{\nabla} \cdot \vec{5} = 0$$

To madulain Lorentz invariance

as a 4-vector:
$$A^{M}(x^{h})$$

Lorent Jacepe Condition Lorent 2 invariant: is also $\partial_{r}A^{n}=0 \Rightarrow \partial_{+}\Phi + c\overline{\partial}_{i}A_{i}=0$ Course symmetry is Lorentz covariant:

An -> An + Cdnd $\Phi^{\circ} \rightarrow \Phi^{\circ} - \frac{\partial}{\partial +} \lambda \quad \stackrel{\rightarrow}{A} \rightarrow \stackrel{\rightarrow}{A} + \partial_{i} \lambda$ So we demonstrated Jull Lorentz invariance of Maxwell equations! Now we will derive the covariant Jorn of Maxwell equations also in terms of E and B' (it will be very nice!)

Field strength tensor FnD, gauge invariance

So far we had:

A M - Lorentz covariant, But not
gauge invariant

E, B - gauge inv,, but not
Lorentz covariant

We will now introduce a new object, called field strength tensor Latso known as Maxwell tensor I which makes both gauge invariance and lorentz symmetry manifest.

It will be the most compact Jornalation

Before we do that let us discuss the distinction between gauge symmetry (invariance) and usual symmetry:

Usual symmetry (Lorentz, translation, tellection...)

Transforms a solution of equations into a different solution [can be distinguished]

Gauge Symmetry (An > An + dn d)

Transforms a solution into physically identical, indistinguishable solution.

Back to Itald strength:

Fud = du Ad - da Au

Ful is a tensor [4x4 table of numbers] it is antisymmetric.

Fnd = - Fdg

We can raise and lower indices with $\eta^{n\partial}$: $F^{n\partial} = \eta^{n\rho} \eta^{n\rho} F_{\rho} F_{\rho}$

F_nD transforms under Lorentz as a Lorentz tensor:

 $F_{\mu \nu} \rightarrow \Lambda_{\mu} F_{\nu} (x'(x'))$ $\chi^{\mu} \rightarrow \chi^{\mu'} = \Lambda^{\mu} \rho \chi^{\nu}$

$$F_{\mu}\partial - \partial_{\mu}A\partial + \partial_{\mu}\partial\partial - - - \partial_{\nu}A\mu - \partial_{\nu}\partial \mu \Delta = F_{\mu}\partial$$

· Now let us gind the relation Between Fx2 and E and B:

remember that

$$\vec{R} = \vec{\partial} \times \vec{A} \quad , \quad \vec{E} = -\vec{\partial} \cdot \nabla - \partial_{+} \vec{A}$$

$$A^{M} = (\Phi, c\overline{A}) \rightarrow A_{n} = (-\Phi, c\overline{A})$$

Foi =
$$(0, A_1 + \partial_2 \Phi, A_2 + \partial_2 \Phi)$$

$$A_3 + \partial_3 \Phi) =$$

$$= (0, -E_x, -E_y, -E_z)$$

$$B_3 = \Sigma_{321} \partial_2 A_1 + \Sigma_{312} \partial_1 A_2 =$$

$$= -\partial_2 A_1 + \partial_1 A_2 =$$

Fz1=-CB3. Check other components

Covariant Jorn of Maxwell equations

Letis remember Maywell equations:

Or in Loventz gange

$$\nabla \times \vec{E} = -\frac{\partial \vec{C}}{\partial t}$$

$$QA^{i} = \mu_{0}\vec{S}$$

$$\partial_{\mu} F^{\mu} \partial_{z} = -\frac{1}{c \varepsilon_{o}} 5^{2}$$

It's simplest to check in Lorentz

$$DA = \frac{1}{c_{5}} = \frac{1}{5} \left(D = \frac{3}{36+2} - 5 \right)$$

but (x) is gauge invariant, so it is true in every gauge!

Two other equations can be written

Empodifie = 0

where 2 nd pot is a 4-dimensional analog of Siik (July anti-symmetric tensor), $\Sigma^{0123} = 1$

Again, if we substitute

Fud = 2n Ad - 2) An then obviously

and (2) 2g Ad - 2) 2g Ag) = 2

But it is a von-trivial constraint

on Fn2 if we don't use An.

Endporms like a tensor
under Loventz. One can
check that it is actually invariant

Endport = Endport